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Acoustic cavitation: the fluid dynamics of
non-spherical bubbles

By John R. Blake, Giles S. Keen, Robert P. Tong
and Miles Wilson

School of Mathematics and Statistics, University of Birmingham,
Edgbaston, Birmingham B15 2TT, UK

In acoustic cavitation the spatial variation and time-dependent nature of the acoustic
pressure field, whether it is a standing or propagating wave, together with the pres-
ence of other bubbles, particles and boundaries produces gradients and asymmetries
in the flow field. This will inevitably lead to non-spherical bubble behaviour, often
of short duration, before break-up into smaller bubbles which may act as nuclei for
the generation of further bubbles. During the collapse phase, high temperatures and
pressures will occur in the gaseous interior of the bubble.

This paper concentrates on the non-spherical bubble extension to the earlier spher-
ical-bubble studies for acoustic cavitation by exploiting the techniques that had pre-
viously been used to model incompressible hydraulic cavitation phenomena. Bubble
behaviour near an oscillating boundary, jet impact and damage to boundaries, bubble
interactions, bubble clouds and bubble behaviour near rough surfaces are considered.
In many cases the key manifestation of the asymmetry is the development of a high-
speed liquid jet that penetrates the interior of the bubble. Jetting behaviour can lead
to high pressures, high strain rates (of importance to break-up of macromolecules)
and toroidal bubbles, all of which can enhance mixing. In addition it may provide
a mechanism for injecting the liquid into the hot bubble interior. Many practical
applications such as cleaning, enhanced rates of chemical reactions, luminescence
and novel metallurgical processes may be associated with this phenomenon.

Keywords: acoustic cavitation; non-spherical bubbles; liquid jet;
toroidal bubble; sonoluminescence

1. Introduction

Acoustic cavitation is one of the exciting areas of research in contemporary physics
and chemistry, with the potential to provide solutions to a range of chemical, met-
allurgical and environmental problems caused by the enormous pressures and tem-
peratures that can be generated inside the cavitation bubbles. The modelling of
these phenomena is extremely complex, not only because of the ‘unknown’ bubble
shape but also because the fluid mechanics of the compressible liquid outside and
the internal gas dynamics need to be modelled accurately. To date, many theoretical
studies have concentrated on spherical bubbles with the potential for development
of a spherical shock wave inside the collapsing bubble. However, it is unlikely that
most bubbles will remain spherical, with recent examples being illustrated by the
studies of Ohl et al . (this issue) for laser-generated bubbles near boundaries and the
earlier doubts expressed by Prosperetti (1997) concerning the mechanism for light
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generation in single-bubble sonoluminescence (although see Prosperetti & Hao (this
issue) and Ohl et al . (this issue)).

Non-spherical bubbles require the solution of partial differential equations, either
Laplace’s equation for effectively incompressible flows, or the wave equation for
weakly compressible flows. Indeed, as the radius of the bubble R0 is often much
smaller than the acoustic wavelength λ (i.e. R0/λ� 1), there is effectively an ‘inner’
region around the bubble which may be regarded as incompressible. These ideas were
exploited by Prosperetti (1984) and others in earlier models of acoustic cavitation
and the derivation of the weakly compressible spherical-bubble equations (Keller
& Kolodner 1956; Gilmore 1952). Current studies are extending the approach of
Prosperetti (1984) to non-spherical bubbles. For high-amplitude acoustic driving
pressures the full equations need to be solved (Moss et al . 1994). This paper will
concentrate primarily on the knowledge that can be gained from incompressible-flow
studies that have, for the most part, concentrated on laboratory studies of the growth
and collapse of vapour cavities normally generated by a spark discharge or a laser
(where luminescence is generated in these studies, it is known as ‘single-cavitation
bubble luminescence’ (SCBL)) (Ohl et al . 1998, this issue; Lohse 1998).

2. Acoustic pressure fields, acoustic streaming and microstreaming

Before developing the theoretical models, it is worthwhile briefly commenting on
three phenomena, namely acoustic pressure fields, acoustic streaming and micro-
streaming. At the linear approximation of the fluid-mechanics equations the deter-
mination of the flow field involves the solution of the wave equation, characterized by
the speed of sound which, for a given driving frequency, determines the wavelength
of the acoustic wave. Clearly the source of sound from a specific device is often
located over a finite area, and complicated pressure and velocity fields can result. An
excellent review of this topic may be found in Leighton (1994). This aspect of real
situations will be simplified in the theory presented in this paper for the pressure field
around a minute bubble. For the most part we will be considering periodic pressure
fields or impulse-type flow fields obtained by using either a spark (see, for example,
Blake & Gibson 1987; Tomita & Shima 1986) or laser discharge (see Ohl et al . this
issue; Tomita & Shima 1986). This approach is often used to study the behaviour of
short-lifetime cavitation bubbles near different surfaces and has applications in laser
surgery and extracorporeal shock-wave lithotripsy (ESWL).

A particle or a bubble in an acoustic pressure field will translate and thence expe-
rience a small change in the pressure and velocity field, leading to a Lagrangian
drift of the particle. However, velocities associated with drift are small compared
to observed motions near an ultrasonic horn, hence other mechanisms need to be
considered. The important contribution comes from the so-called Reynolds stress,
terms arising from the nonlinear momentum terms in the Navier–Stokes equations
(Lighthill 1978a, b; Riley 1998). Often due to various attenuation mechanisms, a gra-
dient of the Reynolds stresses exists leading to a force per unit volume acting on the
fluid. For high Reynolds numbers this leads to a ‘round jet’, observed as the ‘quartz
wind’, while for low values recirculating ‘stokeslet’ eddies can exist near a boundary
(Blake 1971; Lighthill 1978a, b). This environment can lead to a vigorous jet which
can have important mixing, molecular stretching and bond-cleavage effects, as well as
the more familiar cleaning phenomena. Finally, mention should be made of Rayleigh
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streaming, which leads to cellular flow patterns with eddy lengths of 1
4λ induced by

viscous effects in the boundary layer (Lighthill 1978a, b). This effect is often realized
by banding of particles immersed in a planar acoustic field.

The next level of flow field which follows on theoretically from the discussion
of Rayleigh streaming, is associated with microstreaming—the flow attributed to
the oscillations of the bubble. Bubbles oscillating near boundaries can generate
strong microstreaming flows, while, in the case of single-bubble sonoluminescence,
microstreaming flows can be generated by the combined vigorous periodic volume
change and translation. This may be further enhanced by the non-spherical collapse
phase of the bubble, leading to a high-speed liquid jet and toroidal bubble generation
(Longuet-Higgins 1997, 1998).

3. Non-spherical bubble dynamics

The spherically symmetric equations of motion normally used to model the large-
amplitude oscillations of a bubble are those of a nonlinear oscillator. Prosperetti
& Hao (this issue) discuss these models in the context of SCBL. The equations
are derived for weakly compressible flows where the ‘inner region’ surrounding the
bubble is effectively incompressible. This inner incompressible region around the
bubble allows us to adapt the earlier studies in hydraulic cavitation to model some
of the shorter-lifetime non-spherical bubble phenomena of acoustic cavitation.

The most extensively studied phenomenon in cavitation has been the incompress-
ible-flow regime which leads to Laplace’s equation for the potential φ:

∇2φ = 0. (3.1)

Because the bubble shape is spatially and temporally unknown, the most successful
numerical-solution technique has been based on a boundary integral method derived
from Green’s second theorem, whereby the potential φ may be represented as a
surface integral over the bubble surface (and other boundaries) as follows:

c(p)φ(p) =
∫
∂Ω

(
∂φ

∂n
(q)G(p, q)− φ(q)

∂G

∂n
(p, q)

)
dΩq. (3.2)

Here G is a Green’s function appropriate to the system under study, while p is
the position vector of a point in the closure of the fluid domain Ω, and q is the
position vector of a point on the boundaries of the domain, ∂Ω (such as the bubble
surface). The coefficient c(p) is defined to be 1

2 if p ∈ ∂Ω if ∂Ω is smooth, and unity
if p ∈ Ω \∂Ω. The solution procedure involves a discretization of the boundaries ∂Ω
of the fluid domain Ω. Given the initial conditions of the position of any free surfaces
and rigid boundaries together with the values of φ on the free surfaces and ∂φ/∂n
on the rigid boundaries, equation (3.2) may be solved numerically for the remaining
unknowns, and most particularly for ∂φ/∂n on the bubble surface. The sense of the
normal vector to the surface, n, is taken to be positive into the bubble interior. In
order to advance the solution forward in time the kinematic and dynamic conditions
are employed. Suppose that B is the surface of the bubble, then for x ∈ B we have

dx
dt

= ∇φ, (3.3)
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which can be used to update the position of the bubble surface, while the dynamic
boundary condition,

dφ

dt
= 1

2 |∇φ|2 − α(V0/V )κ − δ2(z − z0) +
K

We
+ 1, (3.4)

can be used to update the potential. Note that these equations have been placed
in non-dimensional form—lengths have been scaled with respect to the maximum
bubble radius Rm, time with respect to Rm

√
ρ/∆p and pressure with respect to

∆p = p∞ − pV. Here p∞ is the hydrostatic pressure at the depth of the bubble’s
inception, pV is the liquid vapour pressure and ρ is the density. The terms on the
right-hand side of equation (3.4) are physically associated with, respectively: (i)
fluid inertia; (ii) adiabatic compression of the gaseous bubble; (iii) buoyancy; and
(iv) surface tension. Viscous surface stresses have not been included in these studies.
The dimensionless terms in this expression are as follows: α = p0/∆p, where p0 is the
pressure due to the non-condensible contents of the bubble, κ is the polytropic index
of the gas in the bubble, δ =

√
ρgRm/∆p is the dimensionless buoyancy parameter,

K is the curvature of the bubble surface and We = Rm∆p/σ is the Weber number
where σ is the surface tension. More details on this aspect may be found in Blake et
al . (1986, 1987), Blake & Gibson (1987) and Blake et al . (1997).

Bubbles are subject to the hydrodynamic interaction with other bubbles, rigid
boundaries, free surfaces, gravity, acoustic pressures, and in some cases shock waves,
that lead to asymmetries. In many circumstances this leads to the presence of a liquid
jet that penetrates the interior of the bubble, on occasions at extremely high velocities
(50 m s−1–4 km s−1), with the higher velocities clearly violating the incompressibility
assumptions. These jets impact on the far side of the bubble leading to a toroidal
bubble geometry. The previous numerical technique needs to be modified to allow
the study to move into a multiply connected flow domain. Connectivity is restored
by means of a fictitious ‘cut’ across the liquid jet, leading to a modified boundary
integral equation (Best 1993):

c(p)φ(p) =
∫
∂Ω

(
∂φ

∂n
(q)G(p, q)− φ(q)

∂G

∂n
(p, q)

)
dΩq −∆φ

∫
T

∂G

∂n +
(p, q) dΩq.

(3.5)

Integration over the cut T takes account of any circulation introduced at the jet
impact by allowing a jump in φ values with ∆φ = φ+ − φ−, where the ± identifies
the upper and lower surfaces. The central concept of the theory depends on impact
at a point with no resulting generation of a vortex sheet. This is consistent with the
original mathematical model, which does not allow any mechanism for dissipation of
energy, and with recent experimental studies of droplet impact (Cresswell & Morton
1995).

We illustrate this approach by considering collapsing gas bubbles near a rigid
boundary for different stand-off values γ = h/Rm, where h is the dimensional stand-
off distance and Rm is the maximum bubble radius. In these cases, which are chosen
to correspond to laser-generated bubbles with Rm ' 1.3 mm, the Weber number is
found to be approximately equal to 1.7×103 and so the surface tension term K/We is
neglected in these calculations, as is buoyancy. Figure 1 shows the evolution of bubble
shapes over several time periods for γ = 0.98 (figure 1a) and γ = 5.2 (figure 1b). It
is interesting to compare the velocities of the ‘north pole’ of adiabatic gas bubbles
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Figure 1. Gas bubble collapse near a rigid boundary.

Figure 2. Jet velocities during gas bubble collapse for various values of γ.

(pressure in the bubble interior, pi = pV + p0(V0/V )κ) near a rigid boundary for
different dimensionless stand-off distances γ (see figure 2). The important observation
is that the gas bubble has a peak jet velocity which is obtained at a certain value of
γ (γ ' 3.6) for specified physical parameters, with our calculations being illustrated
here for one set (α = 100, κ = 1.4, We→∞, δ = 0 (figure 2)) to show the qualitative
behaviour. This peak velocity is attained when jet impact occurs at the ‘south pole’ at
minimum bubble volume. Jet velocities are lower for impact before minimum volume
and likewise for impact after the minimum volume has been reached, which ultimately
leads to no impact at all, but rather to rebound of the bubble. Bubble shapes for the
special case of maximum jet velocity at minimum volume are shown in the toroidal
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(a) t = 0.9871 (b) t = 2.0576 (c) t = 2.0824

(d) t = 2.1264 (e) t = 2.1921 (f) t = 2.2829

Figure 3. A rendered half-section of a collapsing cavitation bubble at γ = 3.6, showing the very
fine and thinning jet as the bubble rebounds. Jet impact occurs at minimum volume. (a) Bubble
at maximum radius.

bubble geometry both before and after impact with the thin central core of liquid
(figure 3). Examples of this are also illustrated in Ohl et al . (this issue). Features of
this calculation that are of importance to sonophysicists and sonochemists are the
high strain rates that will occur in the liquid in the region of inflow of the jet at the
‘north pole’ and immediately after jet impact at the ‘south pole’. This may provide
sites for cleavage of macromolecules. Immediately after jet impact, the high pressure
on impact forces the fluid to the side, partly splashing back into the bubble, which
is apparent in figure 3c. This phenomenon is also clearly present later, in figure 9. In
addition the toroidal-bubble behaviour will enhance mixing and hence reaction rates,
especially if reactive chemical species are nearby. High temperatures will also occur
inside the bubble due to adiabatic heating, providing a reactive chemical environment
for the thin thread of liquid penetrating the bubble interior.

4. Bubble behaviour near an oscillating boundary

One of the most striking pictures that has occurred in the acoustic cavitation litera-
ture has been the beautifully clear picture by Crum (figure 4) (see Prosperetti 1984;
Suslick 1989) of a sharp clean jet penetrating a cavitation bubble in the direction of
the oscillating table (a relatively low-frequency paint mixer). If the video from which
this picture has been taken is studied in greater detail, two further features are appar-
ent. First, the remarkable stability of the bubble motion—the presumably toroidal
bubble regenerates as a simply connected bubble; i.e. it expands to maximum volume
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Figure 4. Crum’s photograph of jet formation during bubble collapse

ready to collapse again with almost identical jet behaviour. However, occasionally a
small bubble is shed from the upper surface. This is not entirely unexpected because
similar phenomena are known to exist when a cavitation bubble grows and collapses
in a stagnation-point flow (Blake et al . 1986; Robinson & Blake 1994).

Furthermore, a whole range of oscillatory bubble behaviour and bubble shapes
were obtained, and reported in Crum’s original (1979) paper. Here we briefly develop
theory to enable us to study the observations in greater detail.

It is relatively straightforward to incorporate the oscillating table into the pre-
vious theory for an incompressible bubble by using a modified gravitational term
g′ = g − ω2a sinωt associated with a sinusoidal displacement of the table, given by
a sinωt. The pressure field measured by Crum (1979) confirms this approach as a
valid approximation. The term for dφ/dt in (3.4) in dimensional terms becomes

dφ

dt
= 1

2 |∇φ|2 +
1
ρ

(
p∞ − p0

(
V0

V

)κ
+ σ

(
1

R1
+

1
R2

))
+ (g − ω2a sinωt)(z −H).

(4.1)

In this case we will scale time with respect to the driving frequency of the oscillating
table, leading to the following dimensionless parameters:

P =
p∞

ρω2R2
0
, α =

p0

p∞
, We∗ =

R0p0

σ
,

β =
a

R0
, g∗ =

g

ω2R0
, γ =

H

R0
,

which in turn lead to the following dimensionless form:

dφ

dt
= P

[
1− α

(
V0

V

)κ
+

1
We∗

(
1

R1
+

1
R2

)]
+ (g∗ − β sin 2πt)(z∗ − γ) + 1

2 |∇φ|2.
(4.2)

Some data on parameters are available from Crum (1979), but for others we have
had to estimate them. Examples for bubbles near a rigid boundary are illustrated in
figures 5 and 6.

Figure 5 provides diagrams that yield similar bubble shapes to those associated
with the bubble in figure 4, i.e. a flat oblate-shaped bubble with a ‘bump’ on the
upper surface that becomes a liquid jet penetrating the interior of the bubble. A
slight change in the parameters would lead to a small bubble being ejected at the
stage between times 1.88 and 1.91 in figure 5. Figure 6 shows a more elongated
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(a) t = 0.0000 (b) t = 1.6895 (c) t = 1.8141 (d) t = 1.8814

(e) t = 1.9078 (f) t = 1.9253 (g) t = 1.9536 (h) t = 1.9732

Figure 5. Oscillating boundary BIM calculations: stand-off 1.15; amplitude of oscillation 2 mm.

version of the bubble shape for a greater amplitude of oscillation and slightly smaller
stand-off.

5. Bubble interactions and bubble clouds

Bubble interactions within clouds or assemblies exhibit a variety of interesting behav-
iours governed by primary and secondary Bjerknes forces. In an acoustic standing
wave, pressure gradients lead to migration of bubbles towards either the pressure
node or antinode—a bubble-size-dependent phenomenon. Depending on the respec-
tive phase of their oscillations, the rate of attraction or repulsion is enhanced con-
siderably. Studies of pairs or clouds of bubbles in an acoustic field are limited, with
most of our knowledge in this area being gained from hydraulic cavitation or from
studies of laser-generated cavities. Calculations indicate that the outer shell of bub-
bles is shielded by the central bubbles, and a layered collapse ensues. The generation
of extremely high pressures near to the ‘centre’ is a consequence, and this is believed
to be a mechanism for substantial noise generation from within the cloud (van Wijn-
gaarden 1994).

Generally, in an inviscid flow the spherical assumption for the bubble can be an
adequate representation of the surface if the fluid flow pressures (inertia) are much
smaller than the surface pressure composed of: (1) a restoring pressure due to surface
tension; or (2) a high internal bubble pressure. When the first condition is dominant,
volume fluctuations are small and have a negligible effect on the bubble dynamics.
For the study of such flows, force-balance methods have been extremely successful at
predicting the transient dynamics of the spherical bubbles. For example, Kok (1993)
analysed the motion of a pair of equiradii rising gas bubbles. For larger assemblies,
Sangani & Didwania (1993a, b) showed that the interactions result in the formation
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(a) t = 0.0000 (b) t = 0.3734 (c) t = 0.6799

(d) t = 0.7002 (e) t = 0.7332 (f) t = 0.7742

Figure 6. Oscillating boundary BIM calculations: stand-off 1.1; amplitude of oscillation 3 mm.

of clusters positioned broadside to the direction of the (mean) flow. It is observed
that under the second condition the spherical approximation fails during only the
last stages of collapse, over only about 3% of the bubble lifetime.

As before, we consider a fluid that is irrotational, unsteady and inviscid. The
flow shall be taken to be composed solely of an arbitrary number of bubbles, but is
otherwise unbounded. Consider the surface of bubble j. Without loss of generality
we may represent the normal surface velocity in the following form:

uj · n = Uk
j ψjk. (5.1)

Here Uk
j is used to represent the components of the surface velocity at the surface

of bubble j, ψjk is the amplitude of the corresponding surface mode in an analytical
representation and the summation over k is implied. In a similar manner, a general
solution to the boundary-value problem represented by equations (3.1), (3.3) and
(3.4) can be constructed from a set of coefficients, φk, and spatial functions, χk:

φ = φkχk. (5.2)

In practice, a multipole solution is adopted for these spatial functions. It follows
directly from the linearity of Laplace’s equation and (5.1) that this solution for φ
can be expressed in the Kirchhoff form

φ = Dl
kχlU

k
j , (5.3)

where the coefficients Dl
k are dependent solely on the flow configuration, and again

all summations are implied. To construct these unknown coefficients, we have used a
variational principle applied by Miles (1976). Miles showed that minimization of the
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fluid kinetic energy when expressed in suitable integral form leads to a set of coupled
equations

Dl
kφk =

∑
j

El
jkU

k
j , (5.4)

with the components of Dl
k, E

l
jk given by

Dl
k =

∫
∂Ω

χl
∂χk
∂n

dS, El
jk =

∫
Sj

χlψjk dS. (5.5)

Here ∂Ω =
∑
j Sj denotes the collective surfaces. Expression (5.4) may be cast into

matrix form, and, if the surface variation is prescribed, inverting the resulting matrix
equation provides us with the unknowns, φk. In general the system is either exactly
prescribed or overprescribed depending on how many more potential modes than
surface modes are chosen.

The solution method for the flow dynamics is based on a weighted residual formu-
lation, in conjunction with Bernoulli’s equation for the fluid pressure and continuity
of the stress normal to the gaseous boundary. Under the stated assumptions of poten-
tial flow, continuity of stress provides the following dynamic boundary condition at
the surface of each bubble, j:

dφ

dt
= 1

2 |∇φ|2 +
1
ρ
(p∞ − pj + σ∇ · n) + g(zj −Hj), (5.6)

where pj is the pressure due to any gaseous contents, σ is the surface tension, g is the
gravitational constant and (zj−Hj) is the surface depth. Multiplying by a weighting
function W and integrating over the collective flow boundaries, ∂Ω, we obtain

φ̇k

∫
∂Ω

Wχk dS =
∑
j

∫
Sj

W
[
1
ρ
(p−−pj + σ∇ · n) + g(zj −Hj)

]
Φ

dS. (5.7)

Here the bracketed term is evaluated at constant Φ. We can construct a coupled
set of differential equations for the rate of change of the velocity potential, which
when cast into matrix form yields φ̇k on inversion. The choice of W = ∂χj/∂n was
made from a practical point of view since the resulting integral quantities arise in
the described method of solution for φ (see (5.5)). This equation, along with (5.4),
is non-dimensionalized as in § 3, and subject to appropriate initial conditions, they
are solved concurrently using a fourth-order time-stepping scheme. This provides a
simple algorithm to step the surface forward in time. For the results presented, we
have chosen a multipole representation for the velocity potential and a low-order
spherical-harmonic description of each bubble surface, Sj :

Sj = sj −Rj = 0, (5.8)

Rj =
∞∑
n=0

n∑
m=0

anm,j cos($j)Pnm(θj) + ãnm,j sin(m$j)Pnm(θj). (5.9)

Here anm,j , ãnm,j denote the amplitudes of the surface modes, Pnm the Legendre
polynomials and sj , θj , $j are the radial, polar and azimuthal coordinates in a
spherical-coordinate system local to each bubble. In practice the series is truncated
appropriately.
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Figure 7. Growth and collapse phase for a 13 bubble array having an initial radius
0.2Rm = 0.2× 10−4 m, pg = 25.7p∞.

Figure 8. Variation in peak pressure for a cubic array.

When such assemblies are subjected to a sudden pressure drop within the ambient
fluid (or equivalently undergo explosive growth), the simulations highlight the fact
that a staggered collapse ensues. For a dense cloud of bubbles of similar size, the
collapse is observed to propagate inwards through the fluid. An example of such a
simulation performed on bubbles placed spatially in an array within some given unit
cell is demonstrated for 13 bubbles in figure 7.

We notice that the collapse propagates from the outer bubbles inwards, but the
central bubble, not having quite attained a maximum radius, is to a large extent
unaffected by this early stage of collapse. These numerical results appear to predict
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the correct overall collapse behaviour up to the point where surface jets develop.
Unfortunately it is not possible to resolve the collapse beyond these initial jet profiles,
owing to the inherent instability of multipole solutions. This is of course a region of
primary interest since the maximum fluid pressures occur just after the preliminary
jet–surface impact.

The growth and collapse of more sparse arrays exhibit a similar behaviour with
the jets again directed towards the array centre. For a sparse cubic array of size
10Rm × 10Rm, the temporal variation in the central pressure, shown in figure 8,
suggests that during such a collapse extremely large pressures are generated within
the fluid. However, as one would expect, larger, more dilute, assemblies exhibit no
general direction for the collapse. Furthermore, smaller bubbles may reach their
maximum volume first, with the consequence that a number of indistinct collapses
will occur or the collapse may propagate outwards away from the centre.

6. Jet impact and damage to boundaries

One of the well-known features of hydraulic cavitation is the pitting of propeller
and impeller blades (see, for example, Burrill 1951; Leighton 1994; Trevena 1987).
In acoustic cavitation this phenomenon can be exploited to clean surfaces. A very
simple illustration of this phenomenon is to place a piece of aluminium foil in an
acoustic bath for a few seconds and observe the many punctures in the sheet on
removal. This technique can be exploited during oxidation processes to keep reaction
surfaces clean. This may also be the mechanism for enhanced performance of tanning
in the leather industry.

An understanding of the fluid mechanisms of jet impact on a rigid boundary has
received a number of careful studies on both the experimental and theoretical sides.
However, they would appear to be much more complex phenomena than simply jet
impact, as there are often the additional features of shock waves and high pressures
(and possibly temperatures) associated with the compression of the gaseous content
of the bubble.

Tomita & Shima (1986) provided a thorough and detailed analysis of the growth
and collapse of a laser-generated bubble near a rigid boundary. They found that
damage was associated with both shock waves and also the impact between the liq-
uid drawn in from the far-field by the collapsing bubble with the outward-flowing
liquid associated with the after effects of the liquid jet impacting against the bound-
ary. Surprisingly, the peak pressures were not associated with jet impact, but were
attributed to the impact associated with the subsequent collision of liquid masses and
shock waves. Analysis of stress waves in the solid boundary confirmed the occurrence
of these events. Philipp & Lauterborn (1997, 1998) have more recently exploited very
high-speed camera observations of the jet-impact process, noting the development
of shock waves at differing locations associated with separate events. This work is
reported in greater detail in Ohl et al . (this issue).

Theoretical studies of this phenomenon are limited to the incompressible regime,
but are nevertheless revealing with regard to some of the characteristics of fluid
behaviour immediately following jet impact. The studies of Tong et al . (1999) and
Blake et al . (1998) reveal the significance of the ‘splash’ in generating high pressures
in the incompressible regime (figure 9). The splash is associated with the collision
of the outer inflow, due to bubble collapse, with the inner flow, associated with
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(a) t = 2.2798

(b) t = 2.3146

(c) t = 2.3271

(d) t = 2.3341

Figure 9. Rendered bubble views, together with cross-sectional velocity vectors and pressure
fields for the toroidal stage of bubble collapse near a rigid boundary for γ = 0.98, α = 100,
κ = 1.4. The arrows indicate the relative magnitude and absolute direction of the fluid velocities
and the numbers refer to the dimensionless pressures along the contours.
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Figure 10. Calculations of bubble collapse near a curved rigid boundary: α = 100, κ = 1.4.

the outward jet flow along the rigid boundary. This leads to a stagnation flow on a
circular ring which, when coupled with the higher internal gas pressure, gives a larger
pressure on the boundary than that associated with jet impact (figures 9b, c). Later
still, shock waves may yield higher pressures as the bubble rebounds on reaching
minimum volume. An interesting characteristic of these experimental studies is the
observation of pitting in a circular zone with a radius in the range of 0.6–0.8 of
the maximum bubble radius; a figure which is consistent with the incompressible-
flow analysis. More recently, Philipp & Lauterborn (1998) have observed that laser-
generated single-cavitation bubbles collapsing near an aluminium surface give rise to
pitting at a point below the bubble centre for 1.7 < γ < 2, while for γ 6 1.7, when
the bubble is toroidal, the pitting forms a ring below the bubble.

7. Behaviour near rough surfaces

Cavitation bubbles often cause mechanical damage to a surface, thus leading to
the study of the behaviour of bubbles near rough surfaces. How do rough surfaces
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influence the behaviour of the bubbles as well as serving as a nucleation site for the
development of further bubbles? There have been observations which suggest that
the rough surfaces, which are formed as a result of surface damage, accelerate and
promote cavitation damage still further. There has been little experimentation on
the motion of cavitation bubbles near rough surfaces, but we do report on some of
the recent experimental studies by Tomita et al . (1998). These concern the growth
and collapse of cavitation bubbles near a curved rigid boundary—that is to say that
this study is relevant where the sizes of individual bubbles are roughly comparable
to the scale of the surface roughness (the effect of surface distortion on the motion of
bubbles is enhanced in this case). Eick (1992), meanwhile, has performed calculations
on the motion of a bubble in a conical hollow and also in the vicinity of a wavy rigid
surface, where the amplitude of the waves in the surface is comparable to the size of
the bubble.

Tomita et al . (1998, 1999) used high-speed photography to observe the evolu-
tion of cavitation bubbles near a known curved rigid boundary. These bubbles are
produced using a standard technique for achieving high-energy concentrations—a
laser-focusing technique described by Lauterborn (1972). Boundary integral-method
calculations have been performed to mimic these experiments, producing good com-
parison with experiment (see figure 10). The rigid boundary is defined in cylindrical
polar coordinates as

f(r, z) = (r2 + (γ − z)2)1/2(ξ2(z + ξγ) + (1− ξ2)(r2 + (z + ξγ)2)1/2)

− (γ − z)(r2 + (z + ξγ)2)1/2 = 0. (7.1)

The curvature is determined by the parameter ξ, where ξ < 1.0 gives a convex shape
and ξ > 1.0 gives a concave shape.

In figure 10a a bubble is shown collapsing in a concave region with a liquid jet
directed towards the wall. Figure 10b shows the development of a jet from both ends
of the bubble, leading to an internal impact within the bubble. Figure 10c, for the
case of a more needle-like roughness, records a high-speed jet directed away from the
boundary. This is due to the bubble ‘hanging-up’ on the projection, leading to high
curvature in the lower bubble surface and thence a rapid collapse and subsequent
jet from this side. Whether this interesting behaviour near rough surfaces may be
exploited could be the subject of further theoretical and experimental studies.

8. Conclusions

Non-spherical bubble behaviour is likely to be the norm in nearly all acoustic cavi-
tation studies and warrants far more attention than it has received to date. Interac-
tions with the driving acoustic pressure field, boundaries, other bubbles and buoyancy
forces will all lead to asymmetric bubble behaviour. The consequences are: high veloc-
ities, often in the form of a high-speed jet; higher pressures; zones of impact; high
strain rates; and better mixing. This improved understanding of the fluid dynam-
ics of these phenomena should provide a greater insight into areas of application in
sonophysics, sonochemistry, medicine and in industry.

Funding for this research programme has been provided by the EPSRC Mathematics Programme
and DERA/MoD, which is gratefully acknowledged.
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